Aristaless Related Homeobox Gene, Arx, Is Implicated in Mouse Fetal Leydig Cell Differentiation Possibly through Expressing in the Progenitor Cells
نویسندگان
چکیده
Development of the testis begins with the expression of the SRY gene in pre-Sertoli cells. Soon after, testis cords containing Sertoli and germ cells are formed and fetal Leydig cells subsequently develop in the interstitial space. Studies using knockout mice have indicated that multiple genes encoding growth factors and transcription factors are implicated in fetal Leydig cell differentiation. Previously, we demonstrated that the Arx gene is implicated in this process. However, how ARX regulates Leydig cell differentiation remained unknown. In this study, we examined Arx KO testes and revealed that fetal Leydig cell numbers largely decrease throughout the fetal life. Since our study shows that fetal Leydig cells rarely proliferate, this decrease in the KO testes is thought to be due to defects of fetal Leydig progenitor cells. In sexually indifferent fetal gonads of wild type, ARX was expressed in the coelomic epithelial cells and cells underneath the epithelium as well as cells at the gonad-mesonephros border, both of which have been described to contain progenitors of fetal Leydig cells. After testis differentiation, ARX was expressed in a large population of the interstitial cells but not in fetal Leydig cells, raising the possibility that ARX-positive cells contain fetal Leydig progenitor cells. When examining marker gene expression, we observed cells as if they were differentiating into fetal Leydig cells from the progenitor cells. Based on these results, we propose that ARX acts as a positive factor for differentiation of fetal Leydig cells through functioning at the progenitor stage.
منابع مشابه
Dysgenesis of Enteroendocrine Cells in Aristaless-Related Homeobox Polyalanine Expansion Mutations
OBJECTIVES Severe congenital diarrhea occurs in approximately half of patients with Aristaless-Related Homeobox (ARX) null mutations. The cause of this diarrhea is unknown. In a mouse model of intestinal Arx deficiency, the prevalence of a subset of enteroendocrine cells is altered, leading to diarrhea. Because polyalanine expansions within the ARX protein are the most common mutations found in...
متن کاملARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c.
Mutations in the Aristaless-related homeobox (ARX) gene are found in a spectrum of epilepsy and X-linked intellectual disability disorders. During development Arx is expressed in pallial ventricular zone (VZ) progenitor cells where the excitatory projection neurons of the cortex are born. Arx(-/Y) mice were shown to have decreased proliferation in the cortical VZ resulting in smaller brains; ho...
متن کاملPancreatic α-Cell Specific Deletion of Mouse Arx Leads to α-Cell Identity Loss
The specification and differentiation of pancreatic endocrine cell populations (α-, β-, δ, PP- and ε-cells) is orchestrated by a combination of transcriptional regulators. In the pancreas, Aristaless-related homeobox gene (Arx) is expressed first in the endocrine progenitors and then restricted to glucagon-producing α-cells. While the functional requirement of Arx in early α-cell specification ...
متن کاملExpression of a novel aristaless related homeobox gene ‘Arx’ in the vertebrate telencephalon, diencephalon and floor plate
We have isolated a novel homeobox gene that is expressed in the vertebrate central nervous system and which shows striking similarity to the Drosophila al gene in the homeodomain (85% identity) and in a 17 amino acid-sequence near the carboxyl-terminus. This gene was designated Arx (aristaless related homeobox gene) in consideration of its structural similarity to the al gene. Arx was highly co...
متن کاملCell-autonomous roles of ARX in cell proliferation and neuronal migration during corticogenesis.
The aristaless-related homeobox (ARX) gene has been implicated in a wide spectrum of disorders ranging from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild forms of X-linked mental retardation without apparent brain abnormalities. To better understand its role in corticogenesis, we used in utero electroporation to knock down or overexpress ARX. We show here tha...
متن کامل